Fractality of Deterministic Diffusion in the Nonhyperbolic Climbing Sine Map

نویسندگان

  • N Korabel
  • R Klages
چکیده

The nonlinear climbing sine map is a nonhyperbolic dynamical system exhibiting both normal and anomalous diffusion under variation of a control parameter. We show that on a suitable coarse scale this map generates an oscillating parameter-dependent diffusion coefficient, similarly to hyperbolic maps, whose asymptotic functional form can be understood in terms of simple random walk approximations. On finer scales we find fractal hierarchies of normal and anomalous diffusive regions as functions of the control parameter. By using a Green-Kubo formula for diffusion the origin of these different regions is systematically traced back to strong dynami-cal correlations. Starting from the equations of motion of the map these correlations are formulated in terms of fractal generalized Takagi functions obeying generalized de Rham-type functional recursion relations. We finally analyze the measure of the normal and anomalous diffusive regions in the parameter space showing that in both cases it is positive, and that for normal diffusion it increases by increasing the parameter value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal structures of normal and anomalous diffusion in nonlinear nonhyperbolic dynamical systems.

A paradigmatic nonhyperbolic dynamical system exhibiting deterministic diffusion is the smooth nonlinear climbing sine map. We find that this map generates fractal hierarchies of normal and anomalous diffusive regions as functions of the control parameter. The measure of these self-similar sets is positive, parameter dependent, and in case of normal diffusion it shows a fractal diffusion coeffi...

متن کامل

Implicational Scaling of Reading Comprehension Construct: Is it Deterministic or Probabilistic?

In English as a Second Language Teaching and Testing situations, it is common to infer about learners’ reading ability based on his or her total score on a reading test. This assumes the unidimensional and reproducible nature of reading items. However, few researches have been conducted to probe the issue through psychometric analyses. In the present study, the IELTS exemplar module C (1994) wa...

متن کامل

Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors.

Chaotic attractors arising in physical systems are often nonhyperbolic. We compare two sources of nonhyperbolicity: (1) tangencies between stable and unstable manifolds, and (2) unstable dimension variability. We study the effects of noise on chaotic attractors with these nonhyperbolic behaviors by investigating the scaling laws for the Hausdorff distance between the noisy and the deterministic...

متن کامل

Probabilistic signatures of spatiotemporal intermittency in the coupled sine circle map lattice

The phase diagram of the coupled sine circle map lattice exhibits a variety of interesting phenomena including spreading regions with spatiotemporal intermittency, non-spreading regions with spatial intermittency, and coherent structures termed solitons. A cellular automaton mapping of the coupled map lattice maps the spreading to non-spreading transition to a transition from a probabilistic to...

متن کامل

Deterministic diffusion in one-dimensional maps—calculation of diffusion constants by harmonic inversion of periodic orbit sums

A method is proposed for the calculation of diffusion constants for one-dimensional maps exhibiting deterministic diffusion. The procedure is based on harmonic inversion and uses a known relation between the diffusion constant and the periodic orbits of a map. The method is tested on an example map for which results calculated by different other techniques are available for comparison.  2001 E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002